QUALITATIVE GRAPHING TECHNIQUES

In calculus you will find that you need to graph many functions. Ve

present here a method of graphing functions which is quite easy to apply

and which does apply to many of the functions you will encounter in a
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calculus course. This method is called "qualitative' because it give
the salient qualities of a graph: it gives a general idea as to what the
curve looks like. A more precise graph-—the Fine-tuning of the graph—
can then be obtained by using the methods of th@‘calculuSc The techniques
presented here do not require the calculus for their use, but they do
require it for justification. Finally, we can promise that a mastery of
these techniques will make your study of the calculus a good deal easier.

It also will give you a good feeling for graphs which is useful in many

fields.

V. I'rederick Rickey




Polynomials

A polynomial is a function of the form

. n
F(x) = a. + a.x + a.x® +...+ a x . For example, 3 + 2x ~ %2 and
o 2 n~ !

£l

%% + ux? are polynomials, but 3 - «~! and V% are not. The Fundamental

T

Theorem of Algebra says that every polynomial can be factored as a product

of linear and irreducible quadratic factors. Linear factors are those of

- . - - o " .
the form = + ¢, such as x + 5 and = - 3. ®“ + 1 dis an example of

an irreducible quadratic; it is of the second degree and cannot be factored

(try the quadratic formula)l.

Example 1. x5 - ux" + 61x3 - 65x% - 50x - 125 = (x? + x + 1)(x - 5)°,

This polynomial of the fifth degree has been factored into an irreducible

quadratic and the cube of a linear term. To see that %2 + % + 1 is

24 x+ 1= 0:

'

irreducible apply the quadratic formula to the equation ¥

-b * VbZ-hac _ -1 * Yioh

X o= =
2a 2

and observe that we obtain /~33 which is not a real number.

We are interested only in polynomials which are completely factored

inte linear factors. In fact, the methods we develop below will apply

only to polynomials which have been completely factored. Ve are not trying

to factor polynomials (in general, this can be very hard ).

Example 2. %3 - 1ax2 - 8x + 12 = (x + 3)(x = 2)2 is completely factored

into linear factors. Observe that this is not the case in Example 1.




Ve are not claiming that all polynomials can be completely factored

into linear factors, but all polynomials which we shall consider herve can

be.

The basic building blocks of all polynomials are the powers

we begin by graphing
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There are several important thinpgs which we should ohserve about

these graphs.
1) They all go through the points (0,0) and (1,1).
2) The graphs of the odd powers of x go through the poiﬁt (-1,-1),
while those of even power go through (-~1,1).

3) If the power is odd then the graph crosses the x-axis, while if

it is even the graph touches the x-axis.

4} The higher the power of x is, the "flatter” the eraph is at

the origin.

How we shall introduce two variations of these basic graphs,

This graph looks just like %3  except for the minus sign. The minus sign

flips the graph over so that we have:

Example 4. f(x) = (x - 3)2,

This resembles the graph of y = x? except that its graph touches the

x-axis at (0,0) while the graph of y = (x - 3)2  touches it only at

(3,0). Thus the grﬁph/is
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In general, the graph of

v . n 5 T
v o= % except that it crosses

instead of at (0,0).

Flx) = (% + 4)3.

y o= (% - a)”

or touches the x-axis at the point

looks just like the graph of

(a,0)

The graph looks like that of vy = x3 except that it crosses the x-axis
at (~4,0). ;
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The main thing to note here is that the

left while the minus of Example 4 moves

plus sign moved the graph to the

it to the right.
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Eﬁgmg%gkﬁf flx)y = ~(x + 4)2,

There are two things to note here. The minus sign makes the graph look

like that of vy = -%x2, while the +4 moves the graph 4 units to the left.
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How we come to the MAIN METHOD: If we have a polynomial which has

been completely factored into linear factors, S8y,

1. n, n
k

f(z) = ¢lx - al) (x - az) beo(x =~ a k

>,

(where cf,alf,apg.H,a“m are real numbers and n19n2900=5nk are positive
integers), then the graph of £ c¢rosses or touches the x~axis at the

,0)  (because f(a.) = 0) and

“ N rs
oints (a,
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point (aigo) the graph looks like the graph of y = #x 7. Moreover, the
whole graph is nice and smooth, without breaks and jumps (continuous is
the technical word). Also there are no unnecessary humps or wigples in

the curve.

The first thing to observe is that this curve intersects the s~axis in

two points, when x is 2 and when x is -1 and at no other points.

The points are called the zeroes of the function. At the point (2,0) the
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graph looks like the graph of v = +»  and at (-1,0) it looks like the

graph of vy = #%2 Thus we have:
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Now to decide which of the Four possibilities is correct we must select
one more point, but it doesn't matter which one. Really all we care about
is the sign of f£(x) for some x (different from -1 and 2). Say yvou
put in 1,000,000 for x. Then x - 2 and x + 1 are both positive

and the product is positive, so £(1,000,000) is positive. We put a
graph to indicate our "startine point’ and then proceed to

cross on the

draw the curve from right to left:

As we come down from our starting point to go through the point (2,0)

we have to make the graph look like v A Ve
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There is no way to make it look like

without having a break in the graph or

having the graph go below the x-axis, i.e.,

neither of the following is possible:
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The first of these puts a break in the graph while the second puts in a

third zero.

&

Now it must come back up and touch the axi

again.

S0 the graph must continue as follows:

-

s at (-1,0) and then head down
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This is the completed pgraph.

Ixample 8. f(x) = x3(x - 3)2,

First we plot the zeroes and below each in a little circle we write the

multiplicity, i.e., the exponent associated with that zero. In this case

the multiplicity of the zero 0 is 3 and the multiplicity of the zero

3 is 2. Thus we have:

v
f_ |
o ‘xkaWé ‘ p ?%
T(—f?ﬁ @
i

!
|

The multiplicity 3 tells us that at (0,0) the graph looks like that of

y = #x% and the multiplicity 2 tells us that at (3,0) +the graph looks
like that of y = #x?. Now again we find a starting point. If x is

3

very large then x° and (x - 3)? are large and positive and so the value

of the function is large and positive. We put a cross in the picture to

indicate this starting point and then draw the graph from right to left.
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Observe that at (3,0) the graph looks like that of "y = %2 and that
(0,0) it looks.like that of y = %3, Between the two zeroces we were

forced to put in a hump but there are no extra ones,

Dxample 9. f£(x) = -(x + 2)%(x - 3)3(x - 5N,

First plot the zeroes and their multiplicities:

v}

|
. I ) S, 4 A A S . S+
~ | . T x
@ | ©INC
i’ ? e

i

!

|

Then plot a starting point: If = is very large, say 1,000,000, then

each of x + 2, % - 8, and % - 5 is positive. Thus

(x + 2)2(x - 3)3(x - 5)% » 0 and f(x) < 0. So we start at the cross

and draw the graph:
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If one wants to check this graph one can plot a few additional points.

Bxample 10. £(x) = (x - 3)2(4 - %)%,

We see that there is a zero of multiplicity 2 at 3 and one of multi-

plicity 3 at U4. So we have:

Now. to find a starting point let x be 1,000,000, Then (x - 3)? is

is large and negative. Its cube is

large and positive., But 4 - ¥

also negative., Thus £(1,000,000) is large and negative as is indicated

by the cross:




completely factored polynomial.

First we plot the

multiplicities, i.e., the exponents:

Yhen we draw in the graph taking into account the starting point, zeroes
and their multiplicities we get:
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Now we shall discuss a different way to sketch the graph of a

The following way can be used to solve

certain types of inequalities, so both techniques should be mastered.

F{x) = 23(x - 3)2.

zeroes and below each in a little circle we write their
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How we could plot a "starting point' as in the above examples, but we

shall instead look at the extent of the graph. We shall shade in those

excluded regions. There

regions where the graph isn't, i.e., the so-called
are two zeroes and they divide the line into three intervals:
(ngo)a (\053)9 (3300) ®

In each of these intervals the graph is either entirely positive or

interval to decide which. If 0 < x < 3, then x° > 0 and (x - 3) < 0

but (x - 3)2 > 0, so f(x) > 0. Then we shade out the region below the

interval (0,3):
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Similarly f(x) > 0 if % > 3 and f(x) <0 if % < 0 0 we have
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Now at (0,0) the sraph must look like that of v = x° and at (3,0) it
must look like that of vy = %% as the graph cammot go into the shaded
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Now when we connect these pileces with a smooth graph, without any extra

bumps or wiggles, we get the finished graph.
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Example 12, f(x) = (x + 233 (x - 3)%(x - 4).

»

First plot the zeroces and their multiplicities.
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To check the extent we note that the three zeroes break the line into four




intervals:

of the function in each of these intervals. The bookkeeping

handled via the following chart:

on (“m%“g)i SR

on {(-2,3): T -

on (3,4 + ot - o= -
on (k4,w): + 4+ 4+ =+
On the interval (-«,-2) the - + - means that when x < -2 then
(x + 2)% is negative, (x - 8)2 is positive and (x - 4)
The product of these ig positive.
Using this information we can now shade the graph:
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Then we can draw in the curve near where it crosses the axis using t

multiplicity and by staying out of the excluded regions:

is easily

is negative.

(~o0,-2), (-2,3), (3,4), (4,»), low we must check the sign

15
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Pinally we can complete the graph:
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Note that we were furced to draw the minimum points or valleys in the

intervals (-~2,3) and (3,4). Ve do not know the location of these

minimum peints, in fact, we shall use the calculus in order to locate then

exactly.
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You should also observe that in all of the examples we never put in

more wiggles or bumps than we are forced to. Using the calculus one can

prove that if one puts in no more wiggles or bumps than necessary then

the graph is qualitatively correct.

Example 13. f£(x) = (x - 1)%(x + 2)3(2x - 1)2,
Here the factor (2% - 1) looks unusual. Tt ig not of the form x ~ ¢,

but can be made that way by factoring out the 2 to get 2(x - 1/2). Thus

Fx) = blx - 1)%(x + 2)Y3(x - 1/2)2.

The graph is
y

The factor 4 in the function € does change the graph (it

stretches it, in the vertical direction), but it does not change the

qualitative nature of the graph, i.e., the graph of g(x) and uig(x)

have the same zeroces, multiplicities and general shape. DBecause we do

not care here about how high up or down the curves go we have not placed
any scale on the y-axis.
At this time we can more carefully explain what we mean by the word

Wqualitative." Take the simple example f(x) = x(x - 2)2.  Now




qualitatively all of the following graphs are correct:

< Y Vi
Yy /' /if ;
s H : .l
‘ : ; ( ;
’ f z /
t P g i ;,
f " y § /
S S g NN SES e e PR -
% /1 ® | e
/ |
/ |
;
L
i

The exact location of the maximum point (the top of the bump between the

zeroes) is a quantitative feature of the graph. To locate it precisely

one needs to use the calculus. Our methods just give the general shape

of the graph. Further details can be obtained using the calculus.

We shall welude with several additional examples without comments.
cor ¥

The general plan is always:
1) plot the zeroes and their multiplicities;

starting point (or shade out the excluded regions);

3) draw a smooth graph utilizing the above information (and don't

put in any estra bumps or wiggles).

Y

Flx) = x(x - 1)(x - 2)(x - 3).

y %




Ixample 15. f

F{x)

(x -~ 1)%(x + 1)2.
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Example 16. fx) = (x + 1)%(x - 1)7(x + 2)7.
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F(x) = ~(x - 2)%(x + 202,
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Bxample 18. f£(x) = (x - 1)3(x - 2)2(x).
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Example 21.

Hopefully by

which method

(3~ 2¥3(x - ud(x + 3)2.

Vi
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Flx) = -3x%(x - )3 (x + b

VAR

this time. you see that this is really quite easv, no matter

you use. So it is time Tor you to do some on vour own.




Part 1

Graph each of the following polynomials. Each root or zero should be
marked with a small circle indicating its multiplicity; for example, a zero
of multiplicity three chould be indicated thus: (§¥° You should pay
particular attention to the shape of the graph around the roots. Besides
plotting the zeroces, you should plot at most one more point.

1. fx) = -%? 2. Ffx) = 3x3

3. flx) = (x - 2)2 b, f(x) = -(x - 2)3

5. £(x) = (3 - x)3 6. Flx) = (x - L){x + 1)

7. f(x) = (x - 3)x - 5) 8, f(x) = %% + 2% - B

9., f(x) = %2 ~ 2% + 3 10, F(x) = (x - 3)%(x + 2)

11, £(x) = (2 -~ 3)(x + 2)2 12, i) = (xx - 1){x + 23 (x - 1)
18, £(x) = (2% - 1)(x - 2)(x - 3) W, F(x) = (x - 2)0e + 3)%(x - )3
15, £(x) = (x - 2)2(x + 3)2(x ~ 4)2 16, f£(x) = (x + 2)(2x% ~ 1)(x - u)?
17, £flx) = (x - 6)2(x + W3y - ) 18, Ff(x) = (x ~ 2)2(x + 3)3

19, F(x) = (x + 4)3(x - 6)° 20. F(x) = x(x - 1)2(x + 2)3

21. filx) = x3(x - 1)? 29, F(x) = xt(x + 2)?

23,  F(x) = x%(x - 1)%(x + 3)3 o, F(x) = x2(x -~ 1)3(x + 3)2

25, fx) = (x - 3)3(3x + 1)(2% - 1)% 26, F(x) = 3(x - 3)3(3x + 1)%(2x - 1)

27, £(x) = %3 - %% - 2x 28, f(x) = %t + 2x%3 4 %2
29, f(x) = x° - %% - 3% ~ 6 30, f(x) = = - %% + 1
Part IT

1. Carefully graph all of the BASIC GRAPHS I on the same set of
coordinate axes (colored pencils would help). Plot the points on the
functions for the following values of x: 0, £1/2, +1, *3/2. Observe
how the graphs are related To one another.

2. On one set of coordinate axes plot y = %2, v = -x%, vy = 2%?,

v o= (x - 2)2, Plot points for x = 0, +1/2, +1, £3/2 for the first

three and for 1/2, 1, 3/2, 2, 5/2, 3, 7/2 for y = (s - 2)2, Observe

the relationships between the grpahs.



What is wrong with each of the following graphs?

al

b)

Flx) = %x%(x ~ 2)3

Flx) = (2 - 1)20c + 2)°

c)

[

F(x) = (% - 1)(3 - x)3




b,

Indicate what is wrong with each of the following graphs, which are
supposedly graphs of polynomials.
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Fach of the following is the graph of a polynomial. Find the
equation of the polynomial which best fits this graph.
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6. Which of the following is the
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